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Abstract1

A large body of data strongly supports a crucial role for histone modifications in the regulation of gene2

expression. An increasing number of cases, however, are being reported in which changes in gene expres-3

sion occur without changes in histone modifications. To provide a framework where to properly investigate4

these apparently contradictory observations, we have generated an unprecedented time series deep epige-5

nomics data during a transdifferentiation process that occurs with massive transcriptional changes. During6

this process, we find a strong coupling between histone modifications and gene expression only at the time7

of initial gene activation, when deposition of marks, mostly following gene activation, tends to occur in a8

precise order. Other than at that time, changes in gene expression are mostly uncoupled from changes9

in histone modifications. Over genes, these occur in a very limited number of combinations, defining the10

major chromatin states in the genome, which are largely stable. The overall association between gene11

expression and chromatin is, thus, much weaker than reported so far in steady-state conditions and, for12

some marks, actually runs in the opposite direction.13



Introduction14

Chromatin is the complex of DNA, histone and non-histone proteins that constitutes the chromosomes15

found in the nucleus of eukaryotic cells. Post-translational modifications (PTMs) of histone proteins, to-16

gether with other epigenetic features, can alter the overall chromatin structure and are thought to play a17

critical role in the regulation of all DNA-based processes. In particular, interest has grown in understanding18

the relationship between chromatin and transcriptional regulation.19

Histone marks have been assumed to play an important role in the regulation of gene expression, asso-20

ciated with either active or silent gene expression. For instance, high levels of H3K27ac and H3K4me1 are21

considered a feature of active transcriptional enhancers1, whereas active promoters are typically marked by22

H3K4me32,3. Conversely, constitutive and facultative heterochromatin is normally associated with higher23

levels of H3K9me3 and H3K27me3, respectively4,5. According to the histone code hypothesis6, distinct24

combinations of histone modifications over regulatory regions — associated with specific arrangement of25

transcription factors — confer to each gene a unique temporal and spatial transcriptional program. In26

strong support of this hypothesis, methods to predict gene expression from combinations of different hi-27

stone marks have been developed with great accuracy, even when the predictions are obtained in a cell28

type other than the one in which the model is inferred7,8 This presumed association between gene ex-29

pression and histone modifications underlines, for instance, the great amount of efforts invested to target30

chromatin modifications, with the goal of altering gene expression, to treat certain diseases such as cancer31

and degenerative diseases9–11.32

The majority of these predictions are conducted in steady-state conditions, and therefore do not track33

the association between gene expression and histone marks over time. Studies along time, however, are34

essential to decipher the mechanisms behind transcriptional control and maintenance, since an appro-35

priate balance of stability and dynamics in epigenetic features seems to be required for accurate gene36

expression12. Interestingly, a number of studies in different species and biological models have highlighted37

a degree of correlation between gene expression and chromatin marks over time substantially lower (or38

even absent) than what previously described in steady-state conditions. For instance, during fruit fly devel-39

opment, around 34% of the expressed genes lack H3K4me3 at their promoters13, while transcription can40

occur in the absence of most active marks14,15. It has also been reported that, upon stimulation, changes41

in gene expression are not always accompanied by changes in histone modifications16, and that chromatin42

marks do not represent linear measures of transcriptional activity17,18. Overall, it has been suggested43

that the contribution of chromatin to gene expression may partially depend on the promoter architecture of44

genes19.45

Time-series studies have also striven to elucidate the temporal ordering in which transcription factor46

(TF) binding, deposition of histone marks and RNA Polymerase recruitment occur at both enhancer and47

promoter regions. For instance, it has been reported that enhancers required for hematopoietic differ-48

entiation are already primed with H3K4me1 in multipotent progenitors20. However, de novo enhancers’49

transcription seems to precede local deposition of H3K4me1 and H3K4me2 marks21. Furthermore, de-50



position of H3K4me1 is dispensable for either enhancer or promoter transcription, and does not affect the51

maintenance of transcriptional programs22,23.52

Nevertheless, most time-series studies so far have monitored a few histone modifications in a limited53

number of time-points. To address these limitations, here we have generated gene expression profiles and54

maps of nine histone modifications at twelve time-points along a controlled cellular differentiation process:55

the induced transdifferentiation of human BLaER1 cells into macrophages24. BLaER1 is a human B-cell56

precursor leukemia cell line, stably transfected with a construct containing cEBPα fused with the estrogen57

hormone receptor binding domain24. These cells are able to transdifferentiate into functional macrophages58

at a high efficiency rate upon induction with beta-estradiol, which induces the internalization of the tran-59

scription factor into the nucleus, promoting massive transcriptomic changes. We believe that the data that60

we have generated constitutes an unprecedented resource in the field to understand epigenetic regulation61

of gene expression.62

Analysis of these data reveals that the large steady-state associations between gene expression and63

chromatin marking previously reported are partially artifactual, and mainly arise from the constrained nature64

of the transcriptome and the epigenome. When measured over time, these correlations are globally weak65

and, remarkably, in the case of H3K9me3, run in the opposite direction that previously thought. We found66

that, in contrast to the histone code hypothesis, only a limited number of combinations of histone modifi-67

cations are actually marking the genes, defining the major genic chromatin states in the human genome.68

Genes tend to remain in the same state throughout the entire transdifferentiation process, even those that69

change expression substantially. We have also observed substantial chromatin changes that are not nec-70

essarily accompanied by changes in gene expression, suggesting that epigenetic modifications contribute71

to cell state in a manner that cannot be fully recapituted by gene expression. We did find, however, a strong72

association between chromatin marking and expression at the time of initial gene activation. We have been73

able to determine the precise order of histone modifications at that time, and found that only H3K4me1 and74

H3K4me2 appear to be deposited prior to gene activation. Further changes in gene expression, compara-75

ble or even stronger than those at gene activation, seem to be mostly uncoupled from changes in histone76

modifications.77

A rich resource for time-series analysis of chromatin and gene expression dynamics78

To investigate the temporal interplay between transcriptional activity and chromatin marking during the79

transdifferentiation of BlaER1 cells into macrophages24, we monitored this process at 12 time-points, from80

0 to 168 hours post-induction (p.i.) (Figure 1a). Reciprocal regulation of B-cell and macrophage antigens81

CD19 and Mac-1, respectively, was assessed by flow cytometry throughout the process (Supplementary82

Figure 1a).83

For each time-point we characterized, in two biological replicates, the whole cell RNA-seq gene ex-84

pression profiles and the ChIP-seq maps of nine histone post-translational modifications. Besides the85

six marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3 and H3K9me3) endorsed by the ref-86



erence epigenome criteria (International Human Epigenome Consortium, http://ihec-epigenomes.87

org/research/reference-epigenome-standards/), we have profiled H3K4me2, H3K9ac and H4K20me188

(Figure 1b). This has allowed us to characterize the interchange between different degrees of lysine four89

methylation over time, but also to compare acetylation patterns on distinct lysine residues, and to explore90

the alternation of broad marks over actively transcribed gene bodies. In addition, we have generated, for91

each time-point, ChIP-seq profiles of the transcription factor cEBPα, RNA-seq data from the cytosol and92

the nucleus, as well as riboprofiling and proteomics maps (Correa et al., in preparation).93

To avoid any bias due to differences in the transdifferentiation process between experiments, a crucial94

component of our experimental design is that the RNA and the chromatin to perform immunoprecipitations95

with all histone marks were obtained from the same pool of cells in each biological replicate (see Methods).96

To efficiently and reproducibly analyze the wealth of data generated in a controlled environment, we de-97

veloped ChIP-nf (https://github.com/guigolab/chip-nf), a pipeline implemented in NextFlow25
98

(see Methods).99

Gene expression recapitulates transdifferentiation more accurately than chromatin100

To characterize gene expression and histone modifications’ profiles during the pre-B cell transdifferentiation101

process, we selected the 12,248 genes — out of 19,831 protein-coding genes annotated in Gencode26 ver-102

sion 24 — that were either expressed in at least one time-point (≥ 5 TPM, 10,696 genes), or silent all along103

the process (0 TPM in all time-points, 1,552 genes) (Supplementary Figure 1b). Within expressed genes,104

we identified 8,030 genes characterized by significant changes in their expression profiles over time (differ-105

entially expressed, DE; Supplementary Figure 1b; see Methods). Half of these genes are down-regulated106

during the process, 25% are up-regulated, and for the remaining 25% we observed transient increases107

(peaking) and decreases (bending) in expression. 2,666 expressed genes do not display changes in ex-108

pression over time (stably expressed).109

For every gene in these sets, we also computed the level of each histone modification at a specific110

time-point, either over the gene body in the case of H3K36me3 and H4K20me1, or at promoter regions111

(± 2 Kb with respect to the transcription start site) for the remaining marks (Supplementary Figure 1c, see112

Methods). Roughly all expressed genes are marked by the canonical active histone modifications, whereas113

the proportion of silent genes showing peaks of these marks is low, except for H3K4me1 and H3K4me2114

(Supplementary Table 1). Unexpectedly, marks typically associated with silent transcription (H3K9me3 and115

H3K27me3) are not abundant in either expressed or silent genes.116

To visually summarize the gene expression and individual histone modification profiles during transd-117

ifferentiation, we performed Principal Component Analysis (PCA), in which we plotted the 12 time-points118

based on these profiles (Figure 1c). Even though the PCA was performed jointly on gene expression and119

all chromatin marks — which show different patterns of variation —, the first two principal components120

(PC1 and PC2) still capture about one fifth of the total variance of the data. Whereas gene expression is121

able to recapitulate the process in the space of the first two principal components, the chromatin marks are122

http://ihec-epigenomes.org/research/reference-epigenome-standards/
http://ihec-epigenomes.org/research/reference-epigenome-standards/
http://ihec-epigenomes.org/research/reference-epigenome-standards/
https://github.com/guigolab/chip-nf


less resolutive, with H3K27ac, H3K9ac and H4K20me1 showing the clearest trends. The trajectory of gene123

expression in the PCA space suggests that the process occurs in two different transcriptional phases, with124

PC1 explaining the main differences between pre-B cells and macrophages, and PC2 representing early125

transcriptional changes within the first 24 hours of transdifferentiation. Instead, for several chromatin marks126

we observed parabolic trajectories, with PC2 mainly separating the intermediate stages of transdifferentia-127

tion from the differentiated cell types. Genes contributing to PC1 are mostly up- or down-regulated (Sup-128

plementary Figure 1d), and display significant enrichment in Gene Ontology terms associated with immune129

response and cell motility (Supplementary Table 2). Instead, PC2-contributing genes perform functions re-130

lated to nucleic acids metabolism and protein modification (Supplementary Table 2), and comprise a large131

proportion of genes either displaying no changes in gene expression, or presenting transient increases or132

decreases (Supplementary Figure 1d). Taken all together, these results suggest that, while there are major133

changes in gene expression and chromatin leading from one differentiated cell type to another (PC1), there134

are also changes that may be involved in a transient de-differentiation from pre-B cells into an intermediate135

state, and in the re-differentiation into macrophages (PC2), with expression contributing differently from136

chromatin marks.137

The association between chromatin marking and gene expression is overestimated by cor-138

relations computed in steady-state conditions139

We computed, at each time-point, the steady-state correlation between levels of expression and histone140

modifications across the set of 12,248 genes (Figure 1d). As previously observed, we found a strong141

positive correlation for most active marks (median Pearson r value across time-points between 0.51 and142

0.72), and a (weak) negative correlation for the repressive marks H3K9me3 and H3K27me3 (-0.07 and143

-0.17, respectively). However, when computing, for individual genes, the correlation between expression144

and chromatin profiles through time (time-course correlations), the values are substantially lower for active145

marks (median Pearson r ranging between 0.10 and 0.45), and higher for repressive marks (0.13 and -146

0.03 for H3K9me3 and H3K27me3, respectively; Figure 1d). Remarkably, for H3K9me3 the time-course147

correlation with expression is positive, in contrast to the repressive role generally assumed for this mark148

(see, for instance,27).149

It appears, therefore, that correlations measured in steady-state conditions artificially inflate the true150

degree of association between gene expression and chromatin modifications, and even mis-represent the151

direction of this association. This can be dramatically seen by randomizing the real temporal associa-152

tion between gene expression and chromatin marks. Within each gene’s time-series profile, we permuted153

histone modification levels among time-points, while keeping the actual gene expression values (see Meth-154

ods; for an example with H3K4me3, compare upper and lower panels in Supplementary Figure 2a). As155

expected, the average time-course correlation is zero for all marks (Supplementary Figure 2b). However,156

the steady-state correlations are unexpectedly large for canonically active marks upon randomization, de-157

spite the fact that any meaningful association between gene expression and chromatin marks has been158



eliminated (Supplementary Figures 2a lower panel and 2b). This is likely due to a considerable fraction of159

genes displaying stable expression and chromatin profiles over time, which are either relatively highly ex-160

pressed and marked (housekeeping genes)28, or silent and not marked. Indeed, after removing the genes161

with silent or stable expression profiles over time, the steady-state correlations (Supplementary Figure 2c)162

are lower compared to those computed on the entire set of genes (Figure 1d), and become more similar to163

the time-course correlations.164

Genes are characterized by a limited number of major chromatin states, which are more165

stable than expression166

Next, we investigated the dynamics of chromatin marking during transdifferentiation. Towards that end, we167

summarized the chromatin state of each gene at each time-point, by building a multivariate Hidden Markov168

Model (HMM) on the signal of the nine histone marks along the twelve transdifferentiation points. More169

specifically, we produced a segmentation of the transdifferentiation time by assigning a given chromatin170

state to each gene at each time-point. This is in contrast to previous uses of HMMs in the field, where171

the segmentation is produced along the genome sequence by assigning a given chromatin state to every172

genome interval29–33. We explored configurations with up to twenty different states, and found that five173

states are a good compromise between optimizing the likelihood of the model and the number of states174

capturing the epigenetic status of genes (Supplementary Figure 3a and Figure 2a, see Methods). These175

five states correspond to the major combinations of histone modifications in which genes can be found176

(major chromatin states): a) absence of marking, with the exception of moderate H3K9me3 signal, b) low177

marking (mono and di-methylation of H3K4), c) bivalent marking (mostly marking by H3K4me1, H3K4me2178

and/or H3K27me3), d) canonical active marking (all canonical active marks) and e) strong canonical active179

marking in the presence of H3K9me3 signal. These states (from a to e) correspond to increasing marking180

by canonically active histone modifications, with the exception of the bivalent marking state (c), which is181

also characterized by high H3K27me3 signal. These results suggest that only a limited number of combi-182

nations of marks can co-occur in a given gene at a given time-point. They also indicate that marking by183

H3K4me1 and H3K4me2 appears to be a precondition for marking by any other active histone modification,184

since for none of the configurations that we have explored, we have found states in which there is mark-185

ing by an active histone modification without H3K4me1 and H3K4me2. The most frequent states among186

expressed genes are active and strong active marking (d and e, respectively), while the most frequent187

state among silent genes is absence of marking (a) (Supplementary Figure 3c). This state is defined by188

moderate marking by H3K9me3, consistent with the assumed repressive role of this mark. Strong marking189

by H3K9me3, however, defines also unexpectedly the strong marking state (e), characteristic of expressed190

genes (Supplementary Figure 3b). This, together with the overall positive temporal correlation of this mark191

with gene expression (Figure 1d), suggests a so far unappreciated dual role for this mark. Indeed, we have192

found this mark both over genes silent along transdifferentiation (Supplementary Figure 3c), as well as over193

up-regulated (Fig. 2d, middle panel) and stably expressed genes (Supplementary Figure 3d).194



Hierarchical clustering of genes based on the sequence of the five states along the twelve time-points195

revealed a limited number of temporal chromatin state profiles (Figures 2b-c). Most of the genes remain in196

the same chromatin state during transdifferentiation (constant state profiles), irrespective of whether they197

are stably (79%) or differentially expressed (70%) along the process (Figure 2d, left panels). Thus, during198

transdifferentiation, most changes in gene expression are not accompanied by chromatin changes. Of the199

remaining genes, the vast majority (90%) go over just one-state transition during transdifferentiation. When200

considering DE genes, these transitions are generally associated with the expected transcriptional changes201

(Figure 2c). Transitions from weaker to stronger active chromatin marking are accompanied by increases202

in gene expression (Figure 2c, upper side; Figure 2d, middle panels), while transitions from stronger to203

weaker active chromatin states are accompanied by decreases in gene expression (Figure 2c, lower side;204

Figure 2d, right panels). However, while transitions from active to strong active marking states (and vice205

versa) are more numerous, the corresponding fold changes in gene expression are lower, compared to206

transitions from low marking to active marking states (and vice versa). We observed activating transitions207

from the absent state mainly to the low marking state, further supporting the fact that marking by H3K4me1208

and H3K4me2 is a prerequisite for the deposition of any other active histone modifications. On the other209

hand, we did not observe transitions from the strong active marking state to absence of marking, suggesting210

that the erasing of chromatin marks is not as an efficient process as its deposition.211

Analysis of individual histone marks confirmed the HMM results. We determined whether the marks’212

signals are stable or variable over time, analogously to what was done for gene expression profiles. The213

majority of genes present, indeed, stable chromatin profiles during transdifferentiation, even when focusing214

only on the differentially expressed ones (Supplementary Table 3, left side; Figure 3a). Lysine acetylation215

(H3K27ac and H3K9ac) is the most dynamic signal (Supplementary Table 3, left side). Still, around 35%216

of DE genes show no changes in histone acetylation, despite being marked. Unexpectedly, only 8.5% of217

DE genes show changes in H3K27me3 throughout the process, although roughly half of them are down-218

regulated. Conversely, for a smaller number of silent and stably expressed genes we observed significant219

variations in their chromatin profiles over time (Supplementary Table 4, Figures 3b-c), comparable or even220

larger than for DE genes (Supplementary Figure 4a), although no changes could be detected in their221

expression profiles.222

We observed, in general, that differentially marked genes display clearer transdifferentiation trajectories223

compared to genes that are stably marked (Supplementary Figure 4b), further supporting that the contri-224

bution of gene expression and chromatin marks to cell state is not fully overlapping. Consistent with the225

positive association between H3K9me3 and gene expression, the trajectory for this mark resembles more226

the trajectories of some active marks such as H3K4me1 and H3K4me2, than that of H3K27me3. Actu-227

ally, we have also found more genes in which H3K9me3 is positively than negatively correlated with gene228

expression (see Supplementary Table 3, right side).229



Chromatin marking is associated with expression specifically at the time of gene activation230

The limited number of chromatin HMM states indicates a coordinated behaviour of histone modifications.231

To investigate this behaviour at the resolution of individual marks and how it relates to gene expression,232

we first determined the type of association between each mark and expression along transdifferentiation,233

for each of the 8,030 genes that are differentially expressed (labels: unmarked, stably marked, positively234

correlated, uncorrelated and negatively correlated; see Figure 4a, Supplementary Table 3 and Methods).235

Then, we clustered the combinations of marks and types of association, and found that, in general, in a236

given gene, most marks show indeed the same type of association with expression (Figure 4b). When237

clustering the genes based on these combinations, we found essentially three major groups (Figure 4c,238

Supplementary Figure 5a). The first and largest cluster includes 4,995 DE genes (62%), presenting either239

stable or uncorrelated profiles for the majority of active marks, and absence of marking for H3K27me3240

and H3K9me3 (Figures 5a-b, upper panels). The second cluster includes 2,993 DE genes (37%), showing241

the canonical positive correlation between expression and most active modifications. A large proportion of242

these genes lack repressive marks, but a few of them (9%) exhibit the expected negative correlation with243

H3K27me3 (Figures 5a-b, middle panels). Finally, the third and smallest cluster includes 102 genes (1%)244

characterized by an overall absence of both active and repressive marking, with the exception of H3K4me1245

and H3K4me2 (Figures 5a-b, lower panels).246

Especially in the case of up-regulated genes, these clusters mostly reflect the level of gene activation247

when transdifferentiation starts (Figure 5c, Supplementary Figures 5b-c). Genes in cluster 1 are already248

activated at the beginning of transdifferentiation, genes in cluster 2 are in early stages of activation or are249

activated early during transdifferentiation, while genes in cluster 3 are activated late during the process.250

The functions of the genes in these clusters are consistent with their level of activation at the beginning251

of transdifferentiation (Supplementary Figures 5d-e). In particular, genes in cluster 3 are associated with252

macrophage-specific functions, and we have found them lowly expressed and lowly marked in other cell253

types but CD14+ monocytes (Supplementary Figures 5f-g). Down-regulation of gene expression, on the254

other hand, appears to be largely uncoupled from chromatin changes, since most genes decreasing ex-255

pression belong to cluster 1 (Supplementary Figure 5h).256

Gene expression changes anticipate changes in most active marks for up-regulated genes257

The results above are suggestive that the association between gene expression and histone modifications258

occurs preferentially in a limited window of time during the initial stage of gene activation. Thus, to inves-259

tigate the relationship between expression and chromatin marking precisely at this stage, we focused on260

the set of 257 up-regulated genes that are not expressed at 0 hours p.i., and that are, therefore, specifically261

activated during transdifferentiation. The vast majority of these genes (230, 89%) belong to cluster 2, that262

is, they are indeed characterized by positive correlation between gene expression and active chromatin263

marks. They are mostly associated with low and bivalent marking HMM states and, in 25% of the cases,264



transition into stronger marking states towards the end of transdifferentiation (Supplementary Figure 6a,265

upper panel).266

To investigate the temporal relationship between gene activation and chromatin marking, for each up-267

regulated gene and histone mark we rescaled the expression and chromatin time-series profiles to the268

same range (0-100%), and identified the first time-point at which the expression level and the chromatin269

signal reach at least 25%, 50%, 75% and 100% (Supplementary Figure 6b). In this way, we determined270

whether active chromatin marking anticipates, co-occurs with, or follows gene expression. In contrast to271

the prevalent view, we did not find that most active marks anticipate activation of gene expression. At the272

first stage of up-regulation (25%), only marking by H3K4me1, H3K4me2 and H3K27ac anticipates more273

often than follows activation of gene expression (Figures 6a-b), whereas for the other marks most changes274

follow expression up-regulation. These differences are progressively lost towards the end of the process275

(Figure 6a, Supplementary Figure 6c).276

To further decipher the precise order in which active chromatin signals are established over time, we277

computed, for a given mark, the fraction of genes whose changes either anticipate (Figure 6c, upper panel)278

or co-occur with (Supplementary Figure 6d, upper panel) changes in each of the other six marks. When279

considering 25% of up-regulation, we observed that, in general, no marks anticipate H3K4me1, indicating280

that it is the first mark to increase, followed by H3K4me2 and H3K27ac (Figure 6c, upper panel). This is281

consistent with the HMM analysis, which suggested that marking by H3K4me1 and H3K4me2 is a pre-282

requisite for marking by other histone modifications (Figure 2a). Changes in H3K4me1, H3K4me2 and283

H3K27ac most frequently precede increases in H3K9ac and H3K4me3. In all the comparisons, H3K36me3284

and H4K20me1 follow the other marks (Figure 6c, upper panel). As observed for gene expression, this285

precise order of marks’ deposition is progressively lost along transdifferentiation (Figure 6c upper panel,286

Supplementary Figure 6d upper panel). Overall, this suggests that the deposition of active chromatin mod-287

ifications follows a precise order at the time of initial gene activation (H3K4me1 > H3K4me2 > H3K27ac >288

expression > H3K9ac > H3K4me3 > H3K36me3 > H4K20me1; Figure 6d, left panel).289

We performed a similar analysis with the set of 629 up-regulated genes that are already substantially290

expressed at 0 hours p.i. (> 25 TPM). These genes belong mostly to cluster 1 (389, 62%), that is, their291

expression profiles are uncoupled from changes in chromatin marking, and they actually remain in active292

chromatin states during transdifferentiation (Supplementary Figure 6a lower panel). For these genes we293

did not find preservation in the pattern of chromatin deposition with respect to expression (Supplementary294

Figure 6e), nor in the deposition of the marks (Figure 6c lower panel; Figure 6d right panel; Supplementary295

Figure 6d lower panel).296

A model to explain the coupling between transcription and chromatin marking over time297

Altogether, our results show that the canonical association between histone modifications and gene ex-298

pression mainly occurs in a limited window of time preceding and following initial gene activation. We299

specifically propose a model (Figure 7a) in which the activation of gene expression is anticipated by de-300



position of H3K4me1, H3K4me2 and, less frequently, of H3K27ac at promoter regions. The deposition of301

other marks typically enriched either at promoters (H3K9ac, H3K4me3) or over the gene body (H3K36me3,302

H4K20me1) is concomitant to or, more often, follows (and may be induced by) gene activation. After this303

initial stage of gene activation, further changes in gene expression, comparable or even stronger, appear304

to be mostly uncoupled from changes in histone modifications (Figure 7b, compare left and right panels).305

This model explains our observations well. The patterns of association between chromatin marking306

and gene expression (as defined in Figure 4a) for genes in different degrees of activation when transdif-307

ferentiation starts (0h p.i.) reflect how this association changes as gene activation proceeds (Figure 7c).308

Up-regulated genes that are silent when transdifferentiation starts (mostly in cluster 3) lack almost all “ac-309

tivating” histone modifications, possibly with the exception of H3K4me1 and H3K4me2 (i.). Up-regulated310

genes in cluster 2 that are lowly or not activated at 0h show mostly correlated patterns of expression and311

chromatin marking. In these genes, most marks, with the exception of H3K4me1, H3K4me2 and H3K27ac,312

follow rather than anticipate expression (ii., see also Figure 7b, left panel). As we consider genes with313

increasing degrees of activation at 0h (and thus, in increasingly advanced states of activation), the fraction314

of genes with correlated patterns of expression and chromatin marking decreases, while the fraction of315

genes with stable or uncorrelated chromatin profiles (iii. and iv.) proportionally increases. The temporal316

order of activation of marks observed in early activation stages is also gradually lost. Finally, for genes in317

cluster 1 (v.), which are already highly active when transdifferentiation starts, changes in gene expression,318

even if substantial, are mostly uncoupled from chromatin marking, showing uncorrelated or stable profiles319

(see also Figure 7b, right panel).320

Discussion321

Epigenetics was initially defined as “the branch of biology that studies the causal interactions between322

genes and their products which bring the phenotype into being”34. In a more contemporary definition, “an323

epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without alterations324

in the DNA sequence”35. The epigenetic mechanisms leading to the development of an individual or325

to the differentiation of a cell lineage from the unique genotype of the organism have been largely studied326

during decades. Although initial references to the mechanisms by which epigenetics promotes cell memory327

and leads cell fate did not relate to its ability to regulate gene expression, a causative role for epigenetic328

modifications in controlling transcription has been later pointed out (see 36,37 for reviews about different329

aspects related to epigenetics and its role in regulating gene expression), and it has even been shown that330

some epigenetic features, such as histone modifications, are accurate predictors of gene expression7,8,38
331

and the other way around39.332

However, the causal/consequential relationship between chromatin modifications and gene expression333

represents a long-standing discussion40,41, and a number of reports have challenged the causal role that334

has been broadly attributed to chromatin modifications14,22,42,43. Still, and despite the efforts dedicated to335



this problem and the vast literature produced, the actual relationship between histone modifications and336

the regulation of gene expression remains unsolved.337

This is partially due to the few available studies in which gene expression and histone modifications have338

been both consistently monitored through time in a given dynamic system. Differentiation models are suit-339

able to study the relationship between gene expression and chromatin marking, as they provide a dynamic340

system that allows to decipher the order of the events. In this work, we have used the transdifferentiation of341

BLaER1 cells (pre-B cells) into macrophages, a model that has proven to be highly efficient24, and we have342

generated high-quality data on the transcriptome and the epigenome in twelve time-points along the seven343

days the transdifferentiation process lasts. Our analysis of these data has uncovered some fundamental344

features of chromatin organization in human genes and of the relationship between gene expression and345

histone modifications.346

Our analyses have also contributed to a better understanding of the molecular events underlying trans-347

differentiation of pre-B cells into macrophages. Despite the fact that, to our knowledge, there is no retro-348

differentiation during the process24,44, the joint PCA of gene expression and chromatin marks suggests349

that BLaER1 cells undergo an intermediate state (Figure 1c). This intermediate state is characterized by350

chromatin changes not accompanied by changes in gene expression (Supplementary Figure 7), and vice351

versa by changes in gene expression not associated with chromatin changes (Supplementary Figure 7a).352

Although it is often assumed that the transcriptome is the main determinant of cell state, these results353

suggest that epigenetic modifications contribute to cell state in a manner that cannot be fully recapituted by354

gene expression. Thus, neither the epigenome nor the transcriptome can be fully predictive of one another.355

Consistently, we found that the association between gene expression and chromatin modifications is356

overall weaker than reflected by the correlations reported so far, which have been mostly computed in a357

particular steady-state cellular condition (Figure 1d). These artifactually strong correlations result from the358

largely constrained nature of the human epigenome and transcriptome. In particular, a large fraction of359

genes in the human genome (likely more than 50%28) are either invariably silent and not marked, or ex-360

pressed and marked across most cellular states. Genes with stable epigenomes and transcriptomes drive361

the correlations to large values when computed in a particular cell condition, and explain why models re-362

lating gene expression to histone modifications inferred in a particular cell type have high predictive power363

in other cell types7,8,38,39, even though there is no true causality involved in the relationship between chro-364

matin and expression. The steady-state correlations represent an example of the Sympson’s paradox45, by365

which the data can show different or even opposite behavior if subgroups within the dataset are considered.366

HMMs have been widely used to summarize patterns of combinations of multiple histone modifications367

into a limited number of chromatin states. However, in most cases so far, they have been used to segment368

the genome sequence29–33. Here, instead, we used them, we believe for the first time, to segment time369

along a dynamic differentiation process. The HMM segmentation reveals that, even though the number370

of possible histone combinations is very large (if nine histones are considered, 29 = 512 combinations371

are possible), most genes are actually found in one among only about five major states (Figure 2a). This372



challenges to some extent the notion of a histone code6. Further supporting the limited number of genic373

chromatin states, we found that marks act in a coordinated manner, meaning that genes showing a stable374

profile for one histone modification tend also to present stable profiles of the other marks, and that genes375

showing absence of one active mark tend to be void of all positive modifications (Figures 4b-c, Supplemen-376

tary Figure 5a). Most genes remain in the same chromatin state during transdifferentiation, irrespective of377

whether they are or not differentially expressed, explaining the low correlation between gene expression378

and chromatin marks throughout time. Analysis of individual histone modifications confirmed these obser-379

vations, and further identified a number of silent or stably expressed genes along transdifferentiation that380

show changes in chromatin marking (Figures 3b-c).381

While we have not extensively focused on marks typically associated with gene silencing, our analy-382

ses have nevertheless uncovered some unexpected findings regarding these marks. First, we observed383

that, although roughly 4,000 genes are down-regulated during the process, only 10% of them present384

H3K27me3 marking in at least one time-point, indicating that the majority of genes that are silenced along385

transdifferentiation do not depend on Polycomb repression. Most remarkably, however, we have found that386

H3K9me3 is actually more often associated with gene activation than with gene silencing, in contrast to387

what has been previously reported27. While H3K9me3 at the transcription start site has been previously388

related to active expression in malignant cells46 and, more recently, to actively transcribed genes in early389

preimplantation embryos47, our results show that H3K9me3 is likely to have a general dual association,390

both with up- and down-regulation of gene expression. Additional analyses are required to understand the391

conditions under which H3K9me3 plays either role, but our HMM suggest that H3K9me3 alone is associ-392

ated with repression, while when acting in conjunction with other marks is positively associated with gene393

expression.394

While there is a general lack of coupling between gene expression and chromatin marking, there is395

a temporal relationship between gene expression and the different histone modifications at the time of396

gene activation. We propose a model (Figure 7a) in which activation of gene expression is anticipated by397

deposition of H3K4me1, H3K4me2, while deposition of other marks is concomitant or, more often, follows398

gene activation, being the gene body marks the last ones to be incorporated. The order of chromatin399

marking in our model is in agreement with the observed deposition of histone modifications upon induction400

of gene expression in human melanoma cells48, and with the notion that the methylation of some histone401

residues depends on the transcription machinery43. While we observed that certain modifications, such402

as H3K4me1/2 and H3K27ac tend to anticipate gene expression, this does not necessarily mean that they403

are the cause of transcription initiation. Actually, we have also observed particular cases in which these404

marks are deposited post-activation (for an example see Figure 5b, middle panels). After the initial stage405

of gene activation, further changes in gene expression, even if substantial, appear to be mostly uncoupled406

from changes in histone modifications (Figure 7b). It is tempting to speculate that after the initial burst of407

transcription, histone residues are saturated with modifications, and that therefore, any further up-regulation408

of gene expression cannot possibly be accompanied by increased levels of histone modifications.409



We do have identified a small set of genes that are expressed in the absence of any histone modification,410

with the exception of H3K4me1 and H3K4me2 (Figures 4c, 5a-b lower panels). A few of these are activated411

later during the transdifferentiation process, and therefore we lack the temporal resolution to detect post-412

activation marking. Still, many of these genes are down-regulated or stably expressed, and are unmarked413

even at the beginning of transdifferentiation (for an example see Figure 5b, lower panels). Gene activation414

without histone modifications has been previously observed for developmentally regulated genes in the fruit415

fly15.416

Here we have focused specifically on the dynamics of chromatin modifications during up-regulation.417

Our results suggest that down-regulation appears to be largely uncoupled from chromatin changes (Sup-418

plementary Figure 5h). However, while RNA sequencing-inferred expression levels can be used to approx-419

imately identify the time at which a gene is initially activated, differences in RNA stability may confound420

the identification of the time-point at which a gene is fully inactivated. Indeed, RNAs can be detected long421

after gene inactivation, for a time likely to be specific to each individual gene. Therefore, the data that422

we have generated does not have the appropriate resolution to discard that this lack of coupling during423

down-regulation is partially caused by the difficulty in precisely identifying the time-point at which genes424

stop being expressed.425

The multi-omics data that we have generated during the pre-B cell transdifferentiation into macrophages426

has allowed us to address with unprecedented resolution some fundamental questions regarding the dy-427

namics of chromatin marking and gene expression during cellular differentiation, and have contributed to428

shed light on some long-standing questions in the field. These findings may have implications on therapeu-429

tic strategies currently relying on the causal role of chromatin modifications9–11. Further mining of this data430

resource will certainly contribute to a deeper understanding of the epigenetic layer of gene regulation.431

Methods432

RESOURCE AVAILABILITY433

Materials Availability434

This study did not generate new unique reagents.435

Data and Code Availability436

The code generated during this study is available at https://github.com/bborsari/Borsari_et_437

al_transdifferentiation_chromatin. A complete list of scripts used for each analysis described438

in the section Method details can be found at https://github.com/bborsari/Borsari_et_al_439

transdifferentiation_chromatin/blob/master/bin/table.scripts.tsv. When not speci-440

fied in the text, the code used for a given analysis is included in the corresponding figure’s script.441

RNA-seq and ChIP-seq raw and processed data from this study have been submitted to ArrayExpress442
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(https://www.ebi.ac.uk/arrayexpress/) under accession numbers E-MTAB-9790 and E-MTAB-443

9825, respectively.444

Processed data in GRCh38/hg38 assembly from this study is available for visualization at the UCSC445

Genome Browser49 (http://genome.ucsc.edu/). The track data hub is available at446

https://public-docs.crg.es/rguigo/Data/bborsari/hubs/ERC_human_hub/hub.txt.447

A web page has also been implemented to gather all information regarding the Chromatin and Tran-448

scriptomics Dynamics Project (http://rnamaps.crg.eu/). The web page provides information about449

all experiments and replicates performed during the project, as well as access to the data in ArrayExpress450

and the UCSC Genome Browser.451

ENCODE data is freely available on the ENCODE portal (https://www.encodeproject.org/).452

Experiments and files accession IDs for RNA-seq and ChIP-seq data are reported in Supplementary Tables453

5 and 6, respectively.454

EXPERIMENTAL MODEL AND SUBJECT DETAILS455

Transdifferentiation of BLAER1 cells to macrophages456

For the transdifferentiation process we made use of the Burkitt lymphoma cell line BlaER1, as described457

in 24. Induction of transdifferentiation (treatment with 100 µM β-estradiol and growth in the presence of 10458

nM Il-3 and 10 nM CSF-1) has been described in 50 and 51. The process was monitored at 12 time-points459

(as described in 24): 0, 3, 6, 9, 12, 18, 24, 36, 48, 72, 120 and 168 hours post-induction (p.i.; Figure 1a).460

METHOD DETAILS461

RNA-seq library preparation and sequencing462

Two independent biological replicates for each time-point were performed. Briefly, cells were lysed with463

QiAzol (Qiagen, The Netherlands). Chloroform was added to each sample, and RNA contained in the464

aqueous solution was isolated and purified by using RNeasy mini kit columns (Qiagen, The Netherlands).465

Poly A+ libraries were prepared with 1 µg of total RNA and using TruSeq Stranded mRNA Library Prep466

Kit (Illumina, USA) according to the manufacturer’s protocol. Libraries were analyzed using Agilent DNA467

1000 chips to determine the quantity and size distribution, and sequenced paired-end 75-bp on an Illumina468

HiSeq 2000.469

ChIP-seq library preparation and sequencing470

ChIP-seq experiments of nine histone marks (H3K4me1: Abcam ab8895; H3K4me2 : Millipore 07-030;471

H3K4me3: Abcam ab8580; H3K9ac: Abcam ab4441; H3K27ac: Diagenode C15410192; H3K36me3:472

Abcam ab9050; H4K20me1: Abcam ab9051; H3K9me3: Abcam ab8898; H3K27me3: Millipore 07-449)473

were performed in two independent biological replicates for each time-point. Cells were crosslinked with474
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formaldehyde 1% (Sigma) for 10’ at room temperature. The reaction was stopped by adding glycine to475

0.25 M final concentration for 10’ at room temperature. Fixed cells were resuspended in 100 µL of lysis476

buffer (SDS 1%, EDTA 10 mM, TrisCl 50 mM and protease inhibitors). The lysate was sonicated for 25’477

using Covaris S2 system in TC12 tubes (Duty cycle 20%, Intensity 8, cycles/burst 200, water level 15).478

The cleared supernatant was used immediately in ChIP experiments or stored at -80 ◦C. 5 µg of sonicated479

chromatin were diluted in 900 µL RIPA buffer — H3K4me3, H3K9ac, H4K20me1, H3K27me3 and H3K27ac480

(140 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% Na deoxycholate,481

protease inhibitors) —, RIPA 2X — H3K4me1, H3K4me2 and H3K9me3 (280 mM NaCl, 10 mM Tris-482

HCl pH 8.0, 1 mM EDTA, 2% Triton X-100, 0.2% SDS, 0.2% Na deoxycholate, protease inhibitors) —,483

or RIPA 1X 1% triton — H3K36me3 (280 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1% Triton X-484

100, 0.2% SDS, 0.2% Na deoxycholate, protease inhibitors). For H3K4me3, H3K36me3, H3K9ac and485

H3K27me3 ChIPs, chromatin and antibodies were incubated overnight, rotating at 4 ◦C with 0.125-5 µg of486

specific antibody and samples were then incubated for 2 hours rotating at 4 ◦C with Dynabeads protein A487

for immunoprecipitation (Invitrogen) to recover the bound material. For H3K4me1, H3K4me2, H3K9me3,488

H4K20me1 and H3K27ac ChIPs, antibodies were coated to protein A magnetic beads for 2 hours at 4489

◦C prior to overnight incubation with chromatin. In all cases, beads were washed for 10’ three times in 1490

mL of the corresponding immunoprecipitation buffer without protease inhibitors, then washed once in 1 mL491

LiCl buffer (0.25 M LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM Na-EDTA, 10 mM Tris-HCl, pH492

8.0), and finally washed twice in 1 mL of TE buffer (1 mM Na-EDTA, 10 mM Tris-HCl, pH 8.0). ChIPped493

material was incubated with DNase-free RNase at 50 µg/mL for 30’ at 37 ◦C. Chromatin was reverse-494

crosslinked by adding SDS (0.5% final concentration) and Proteinase K (500 µg/mL final concentration)495

and incubated overnight at 65 ◦C. ChIPped chromatin was then purified with Qiaquick PCR purification496

columns (Qiagen) following the manufacturer’s instructions. ChIP libraries were prepared with 1-5 ng of497

DNA and using NebNext Ultra DNA library prep kit for Illumina (New England Biolabs) according to the498

manufacturer’s protocol. Libraries were analyzed using Agilent DNA High Sensitivity chips to determine the499

quantity and size distribution, and sequenced single-read 50-bp on an Illumina HiSeq 2000.500

In total, 264 samples were sequenced (24 by RNA-seq, 216 by ChIP-seq, 24 by ChIP input).501

RNA-seq data processing and analysis502

Data was processed using the grape-nf (https://github.com/guigolab/grape-nf) Nextflow25
503

pipeline. RNA-seq reads were aligned to the human genome (assembly GRCh38, Gencode annotation504

version 24) using the STAR52 software version 2.4.0j . We allowed a maximum number of mismatches505

equal to 4% of the read length. Only alignments for reads mapping to ten or fewer loci were reported.506

Quantification of genes and transcripts was done with RSEM53 version 1.2.21. TPM calculation was per-507

formed after removing mitochondrial genes.508

From the set of 19,831 protein-coding genes (Gencode v24), we selected 10,696 expressed genes with509

a maximum expression during transdifferentiation ≥ 5 TPM in both replicates, and 1,552 silent genes (0510
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TPM in all time-points and replicates). Based on this set of 12,248 genes, we quantile-normalized the ex-511

pression matrices (log2-transformed TPM, pseudocount of 1) across replicates and time-points using the R512

package preprocessCore54 (script: quantile.normalization.R), and obtained the mean expression513

levels between replicates (script: matrix matrix mean.R).514

To detect significant gene expression changes along transdifferentiation, we used the R package maSig-515

Pro55 with replicates handled internally. Function p.vector() was run with default parameters: Q = 0.05,516

MT.adjust = "BH", min.obs = 20 (script: maSigPro.wrapper.R). We defined as stably expressed517

those genes reporting a maSigPro FDR value ≥ 0.05 (n = 2,666).518

As concerns the identification of up-regulated, down-regulated, peaking and bending genes, we per-519

formed a two-step classification across the 8,030 genes with significantly variable gene expression profiles.520

Briefly, we first focused on profiles with at least two-fold change (in log2 scale this change corresponds to 1)521

and identified monotonic up-regulations and down-regulations; peaking profiles were defined as monotonic522

increases followed by monotonic decreases, bending profiles as the opposite (script: classification.523

log2.pl). All other significantly variable genes with fold-change < 2 were assigned to one of these four524

groups following hierarchical clustering (distance measure: euclidean; clustering method: complete; script:525

classification.2.R).526

ChIP-seq data processing and analysis527

Data was processed using the ChIP-nf (https://github.com/guigolab/chip-nf) Nextflow25
528

pipeline. ChIP-seq reads were aligned to the human genome assembly (GRCh38) using the GEM56 map-529

ping software, allowing up to two mismatches. Only alignments for reads mapping to ten or fewer loci530

were reported. Duplicated reads were removed using Picard (http://broadinstitute.github.io/531

picard/). Pile-up signal from bigWig files was obtained running MACS257 on individual replicates. No532

shifting model was built. Instead, fragment length was set to 250 bp and was used to extend each read533

towards the 3’ end (using the --extsize option). Pile-up signal was normalized by scaling larger sam-534

ples to smaller samples (using the default for the --scale-to option) and adjusting signal per million535

reads (enabling the --SPMR option). Peak calling was performed using Zerone58 with replicates handled536

internally, and passed the filter for all pairs of replicates (advice: accept discretization).537

To check library complexity, we computed the fraction of non-redundant mapped reads59 (recom-538

mended threshold: NRF ≥ 0.8) for each ChIP-seq experiment, and found a minimum NRF value of 0.92.539

Additionally, to evaluate the global ChIP enrichment, we computed the fraction of reads in peaks59 (recom-540

mended threshold: FRiP ≥ 0.01), and found a minimum FRiP value of 0.05.541

The intersection / overlap analyses described below were performed with the function intersectBed542

of BEDTools60 software v2.27.1.543

To select the genomic location enriched, on average, in a specific histone mark (region of interest),544

we focused on an up-stream and down-stream 5 Kb region (±5 Kb) with respect to the first annotated545

Transcription Start Site (TSS) of the gene, and retrieved 6,063 protein-coding genes that did not overlap546

https://github.com/guigolab/chip-nf
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


any other gene body ±5 Kb. For each histone modification we then selected, among the 6,063 genes,547

those with peaks in the ±5 Kb promoter region in all the 12 time-points, and computed, using the function548

aggregate from the bwtool61 software (script: bwtool.aggregate.ChIPseq.sh), the mean pile-up549

signal for each experiment. Based on this analysis, we decided to select as regions of interest i) the gene550

body for H3K36me3 and H4K20me1, ii) ±2 Kb with respect to the TSS for all other marks (Supplementary551

Figure 1c). A comprehensive catalogue of all non-redundant (same ensembl gene ID and start coordinate)552

TSSs annotated for the selected 12,248 in Gencode v24 was obtained with the script non.redundant.553

TSS.sh.554

To compare expression and chromatin profiles over time, we quantified, for each of the nine histone555

marks, the amount of pile-up signal associated with a gene at each time-point (script: get.matrix.556

chipseq.sh). Briefly, if a peak was present in the region of interest of a gene at a specific time-point,557

we considered the mean pile-up signal in the intersection between the peak and the region of interest,558

otherwise we computed the mean pile-up value in the entire region of interest. In the presence of multiple559

peaks and/or multiple regions of interest (e.g. in case of multiple TSSs annotated for the same gene), we560

considered the highest of all observed values. Matrices of histone marks’ signals for the selected 12,248561

protein-coding genes were quantile-normalized across replicates and time-points using the R package562

preprocessCore54 as done for gene expression. For all down-stream analyses, we used the mean signal563

between replicates.564

Principal Component Analysis of expression and chromatin data565

For this type of analysis we made use of the transposed expression and chromatin For this type of analysis566

we made use of the transposed expression and chromatin matrices generated as described in sections567

RNA-seq data processing and analysis and ChIP-seq data processing and analysis, respectively. There-568

fore, genes (columns) and time-points (rows) were used as variables and observations, respectively. We569

centered and scaled each of the ten transposed matrices independently, obtaining z-score profiles for each570

time-point monitored at expression and histone marks’ level. For the joint Principal Component Analysis571

(PCA) reported in Figure 1c across expression and the nine histone marks, we included as variables the572

subset of 10,658 genes with non-missing (NA) z-score profiles in all ten matrices. As a consequence,573

1,590 genes were excluded from this analysis, 98% of them being the silent genes (1,552). For the PCAs574

reported in Supplementary Figure 3d, we considered for each histone modification the corresponding sets575

of DE genes that are either stably or differentially marked.576

Analysis of the degree of correlation between expression levels and chromatin signals577

Steady-state correlations between gene expression levels and each histone mark’s signals were computed578

at individual time-points considering the entire set of 12,248 selected protein-coding genes. In this case,579

Pearson r measured the degree of correlation between the vector of 12,248 expression levels and the vector580

of 12,248 mark signals at a given time-point (Figure 1d, dots). Time-course correlations were measured,581



instead, at the level of individual expressed genes. Silent genes were not considered for this analysis,582

because of the zero standard deviation in their time-series expression profile (i.e. 0 TPM in all time-points).583

Thus, for each gene and histone mark we obtained the Pearson r correlation coefficient between the vector584

of 12 expression levels (i.e. the expression levels measured at the 12 time-points) and the vector of 12 mark585

signals. The distributions of Pearson r correlation coefficients for the set of (differentially + stably) expressed586

genes are depicted with box plots and violin plots in Figure 1d. Randomized steady-state and time-course587

correlation coefficients were computed as described above following a 1,000-permutations scheme on each588

histone mark’s matrix. Briefly, while we kept the original expression matrix, the columns (time-points) of589

the matrix corresponding to a given mark’s signal were permuted without repetition 1,000 times (for an590

example, see Supplementary Figure 2a, lower panel). In the case of steady-state correlations we report,591

for each expression time-point, the Pearson r averaged over 1,000 rounds of permutation of chromatin592

time-points (Supplementary Figure 2b, dots). In the case of correlations computed across time-points (time-593

course), we computed, for each gene, the Pearson r averaged over the 1,000 rounds of permutations. The594

distributions of the resulting coefficients across the set of expressed genes are depicted in Supplementary595

Figure 2b (box plots and violin plots). Correlations were computed with the R function cor(). Permutations596

without replacement of the chromatin time-points were performed consistently across histone marks with597

the R function sample(), by setting an independent seed for each round of permutations. The correlation598

values reported in Supplementary Figure 2c are an analogous exercise to Figure 1d on the set of 8,030599

differentially expressed genes.600

Multivariate Hidden Markov Model analysis601

A multivariate Hidden Markov Model (HMM) was fitted to the entire ChIP-seq dataset to approximate the602

set of underlying chromatin states reported by the 12,248 selected protein-coding genes along the transd-603

ifferentiation process. Specifically, we provided as input a matrix of dimensions 146,976 rows × 9 columns,604

which collected for each gene and time-point (12,248 genes, 12 time-points) the signal of each of the605

9 histone marks after quantile normalization (for a description of these calculations see previous section606

ChIP-seq data processing and analysis). The collective behavior of the nine histone marks along the twelve607

time-points was modelled as an independent time-series for each gene, using Gaussian distributions. The608

model then reprocessed each gene’s data to estimate the chromatin state of each gene at each time-point,609

and provide a time series of chromatin states for each gene. HMM was performed using the R package dep-610

mixS462, in particular functions depmix(), fit() and posterior() (script: HMM.wrapper.marks.R).611

We repeated the analysis for increasing numbers of states (between 2 and 20), and recorded the log612

likelihood of each model (the 20-states model reached the maximum number of iterations in EM without613

convergence). We found that somewhere between five and eight states approximate the elbow point of614

the log likelihood curve (Supplementary Figure 3a), and observed that the combinations of histone marks615

represented by five states were consistent with manual inspection of pile-up histone marks profiles in the616

UCSC genome browser. We thus set for five states. The response parameters of the nine histone marks617



corresponding to each of these states are reported in Figure 2a. In this case, the Intercept values of each618

histone mark across the five states were re-scaled to a range 0-1 to enable the comparison among differ-619

ent states and marks. HMM sequence hierarchical clustering across the 12,248 genes was performed with620

the TraMineR63 and pheatmap (https://github.com/raivokolde/pheatmap) R packages (cluster-621

ing distance: euclidean, clustering method: Ward.D2). The arc diagram representation in Figure 2c was622

obtained with the R package arcdiagram (https://github.com/gastonstat/arcdiagram).623

Decision-tree labelling624

In the Methods section ChIP-seq data processing and analysis we introduced the distinction between genes625

with and without peaks of a given mark at a given point in the region of interest (gene body for H3K36me3626

and H4K20me1; TSS ±2 Kb for all other marks). Following this first assessment, we classified as unmarked627

those genes that were consistently unmarked throughout the whole process of transdifferentiation, i.e. with628

no peaks called at any time-point in the region of interest. Conversely, marked genes reported peak calls629

of a given mark in the region of interest in at least one time-point (Figure 4a).630

Within the set of marked genes, we defined as stably marked (SM) those that did not report significant631

changes detected by maSigPro55 over time (FDR ≥ 0.05). On the contrary, differentially marked (DM)632

genes reported significant changes in a given mark’s profile over time (FDR < 0.05). To ensure a multiple633

testing correction procedure consistent among the nine marks and also with respect to gene expression,634

maSigPro was run, as described for gene expression (default parameters, replicates handled internally),635

on the initial set of 12,248 genes, which also included unmarked genes.636

The next branch of classification (Figure 4a) was applied only to the set of differentially marked genes637

that are also differentially expressed. To ensure consistent results among histone marks, the following mul-638

tiple testing correction procedures were always applied to the set of 8,030 DE genes. For each DE gene,639

we computed at each time-point the breadth of a given mark’s signal, defined as the fraction of the gene’s640

size (from the first annotated region of interest until the last annotated Transcription Termination Site, TTS)641

covered by peaks of the mark. We refer to this vector of length 12 as the mark’s coverage vector. We642

next considered i) Pearson r correlation coefficient between the time-series expression levels and mark’s643

signals; ii) Pearson r correlation coefficient between the time-series expression levels and mark’s coverage644

values; iii) statistical significance of the Needleman-Wunch (NW) dynamic time warping alignment be-645

tween the time-series expression levels and mark’s signals (following Benjamini-Hochberg multiple testing646

correction; script: p-adjust.R). We used as input for the NW alignments (scripts: NW.alignment.647

path.R, NW.bidirectional.matches.py) the z-score profiles of expression and mark obtained after648

applying polynomial regression (degree = 2) on the original matrices (scripts: loess.polynomial.649

regression.R, NW.generate.input.matrix.sh). This procedure was applied to remove the noise650

due to occasional fluctuations in signal over time. A permutation p value for each gene was computed651

(script: NW.pvalue.permutation.test.py), based on a 100,000-permutations scheme (script: NW.652

alignment.permutations.R). To classify a gene as positively correlated, we required at least two of653

https://github.com/raivokolde/pheatmap
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the following conditions: i) Pearson r correlation coefficient between the time-series expression levels and654

mark’s signals ≥ 0.60 and FDR < 0.05; ii) Pearson r correlation coefficient between the time-series expres-655

sion levels and mark’s coverage values ≥ 0.60 and FDR < 0.05; iii) NW alignment between the time-series656

expression levels and mark’s signals with FDR < 0.05. For negatively correlated genes, we required at657

least two of the following conditions: i) Pearson r correlation coefficient between the time-series expres-658

sion levels and mark’s signals ≤ -0.60 and FDR < 0.05; ii) Pearson r correlation coefficient between the659

time-series expression levels and mark’s coverage values ≤ -0.60 and FDR < 0.05; iii) NW alignment be-660

tween the time-series expression levels and mark’s signals with FDR ≥ 0.05. Genes that did not meet661

these requirements were classified as uncorrelated. The same decision-tree classification was performed662

independently for each of the nine histone marks, to ensure comparable results among all modifications663

(script: define.6.groups.R).664

Clustering analysis665

We considered all 45 combinations between the 9 histone marks and the 5 decision-tree labels described666

in the previous section. For instance, one combination may be “stably marked + H3K4me3”, and another667

combination may be “positively correlated + H3K27ac”. To test the co-occurrence of this pair of combi-668

nations, we retrieved the set of DE genes that are labelled “stably marked” for H3K4me3, and the set of669

DE genes that are labelled “positively correlated” for H3K27ac. The significant overlap between these two670

sets of genes was tested by the hypergeometric distribution (R function phyper()). We repeated this671

procedure for all possible pairs of combinations. We next clustered the p values obtained after applying the672

Benjamini-Hochberg False Discovery Rate (FDR) multiple testing correction. Hierarchical clustering was673

performed with the ComplexHeatmap64 R package (clustering distance = Manhattan, clustering method674

= Ward.D2). Cluster correspondence analysis65 of the 45 categorical variables (combinations of histone675

marks and decision-tree labels) across the 8,030 selected genes was performed with the R package clus-676

trd66. To select the optimal number of clusters and dimensions, we first run the function tuneclus()677

with the following parameters: nclusrange = 3:10, ndimrange = 2:9, method = "clusCA", nstart678

= 100, seed = 1234. This indicated that the optimal number of dimensions and clusters was two and679

three, respectively. We then obtained the three clusters of genes running the function clusmca with the680

following parameters: nclus = 3, ndim = 2, method = "clusCA", nstart = 100, smartStart = NULL,681

gamma = TRUE, seed = 1234. We obtained the same clusters of genes when running the function clusmca682

with the following parameters: nclus = 3, ndim = 3, method = "MCAk", alphak = 0.5, nstart = 100,683

smartStart = NULL, gamma = TRUE, seed = 1234). This allowed us to explore the clustering of genes684

also in the third dimension (Figure 4c, Supplementary Figure 4a).685

Gene Ontology enrichment analysis686

We used the R package GOstats67 to identify Gene Ontology (GO) terms related to biological processes687

(BP) and cellular compartments (CC). We set a p value threshold of 0.01 to identify significantly enriched688



terms. For the GO enrichment analysis on the genes contributing to Principal Components (PC) 1 and689

2 (described in Results, section Gene expression recapitulates transdifferentiation more precisely than690

chromatin; Figure 1c, Supplementary Table 2), we used the function get pca var() from the R pack-691

age factoextra (https://CRAN.R-project.org/package=factoextra) to extract the 10% genes692

(n = 1,066) with the highest contribution to each of the two first principal components. The union of693

these two sets of genes was used as background for the GO enrichment analysis. We used REVIGO68
694

(http://revigo.irb.hr/) to summarize the lists of enriched GO terms. For the GO enrichment anal-695

ysis on the up-regulated genes that belong to the three chromatin clusters (described in Results, section696

Chromatin marking is associated with expression specifically at the time of gene activation), we provided697

as background the set of 2,103 up-regulated genes. In this case, we used REVIGO and the R package698

ggplot269 to compute and visualize, respectively, maps of the identified GO terms based on their frequency,699

−log10 p value, uniqueness and dispensability. Only children terms with dispensability < 0.5 are shown.700

Analysis of ENCODE RNA-seq and ChIP-seq data701

To investigate differences in gene expression levels and chromatin marking among the three clusters of702

DE genes in other biological models, we obtained RNA-seq data and ChIP-seq data for histone marks703

generated by the ENCODE Project70,71 (https://www.encodeproject.org/). Besides B cells and704

CD14-positive monocytes, which are biologically more similar to pre-B cells and macrophages, respec-705

tively, we selected five cancer cell lines (K562, HepG2, GM12878, MCF-7, A549) that are comprehensively706

characterized by ENCODE ChIP-seq data for the nine histone marks that we have profiled in our study. To707

assess differences in gene expression levels between the three clusters of DE genes, we obtained gene ex-708

pression quantifications (with respect to Gencode v24) from polyA+ RNA-seq experiments (accession date:709

10/06/2019). We computed, for each gene, the average TPM values between two biological replicates. The710

list of experiments and datasets’ accession IDs used for this analysis is reported in Supplementary Table711

5.712

To assess differences in chromatin marking, we obtained ChIP-seq data available for the nine histone713

marks profiled in our study. (Assay title: Histone ChIP-seq; Genome assembly: GRCh38; Output type:714

replicated peaks or stable peaks; Accession date: 10/06/2019). The list of experiments and datasets’715

accession IDs used for this analysis is available in Supplementary Table 6. In all cases, we excluded716

experiments associated with AUDIT errors. In case of multiple experiments on the same target and cell717

type, the experiment associated with the lowest number of AUDIT terms was selected. The scripts used to718

retrieve and filter the ENCODE experiments are: download.metadata.sh, parse.metadata.audit.719

categories.py, retrieve.encode.identifiers.sh, parse.list.identifiers.sh.720

For each experiment and cell type, we computed the proportion of genes with at least one peak called721

over the gene body (H3K36me3, H4K20me1) or in the promoter region (TSS ±2 Kb for all other marks;722

script: intersect.peaks.regions.sh). In the presence of multiple TSSs annotated for the same723

gene, multiple regions were considered. This is consistent with the analyses described in section ChIP-seq724

https://CRAN.R-project.org/package=factoextra
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data processing and analysis.725

Analysis of temporal dynamics726

For this analysis we first identified, within the set of 2,103 up-regulated genes, 257 with expression at 0727

hours p.i. < 1 TPM. These genes were, therefore, specifically activated during transdifferentiation. Ex-728

pression and chromatin profiles of each of the considered genes were re-scaled to range 0-100 (script:729

rescale.R): in this way, the minimum and maximum expression level or chromatin signal over the 12730

time-points were set to 0% and 100% of up-regulation, respectively. We next considered, for each gene,731

pairs of consecutive time-points along transdifferentiation (e.g. 0h and 3h; 3h and 6h; 6h and 9h; etc.),732

and recorded the first time-point at which the expression / chromatin profile crossed (≥) 25%, 50%, 75%733

and 100% degree of up-regulation (Supplementary Figure 5b). This “crossing” step implies that, in a pair734

of consecutive time-points, the signal corresponding to the first time-point is, for instance, < 25%, and the735

signal corresponding to the second time-point is, for instance, ≥ 25%. This assessment is performed for736

each of the four degrees of up-regulation. To ensure monotonic increases consistently across all histone737

marks, we excluded genes for which this “crossing” step could not be observed for all four degrees of738

up-regulation in a given mark’s time-series profile. This explains the different numbers of genes, among739

marks, reported in Figure 6a and Supplementary Figure 5e. For a given gene and for each of the four de-740

grees of up-regulation, the recorded time-points (tp) for expression and chromatin profiles were compared,741

and a label was assigned depending on whether the up-regulation of chromatin signal anticipated (tpmark742

< tpexpression), co-occurred (tpmark = tpexpression) or followed (tpmark > tpexpression) the up-regulation of743

gene expression. We analogously compared the up-regulation between pairs of histone marks (Figure 6c,744

Supplementary Figure 5d). In this case, we analyzed whether the up-regulation of histone mark’s signal745

on row i anticipated (tpi < tpj) or co-occurred with (tpi = tpj) the up-regulation of histone mark’s signal on746

column j. To assess whether the specific order of up-regulation in expression levels and chromatin signals747

depended on the initial level of expression of the genes, these analyses were repeated starting on a set of748

629 up-regulated genes with expression at 0 hours p.i. > 25 TPM.749

QUANTIFICATION AND STATISTICAL ANALYSIS750

Details regarding statistical tests, significance assessment, dispersion and precision measures are re-751

ported both in the section Method details and in the figures’ legends. All statistical analyses were performed752

using the R language for statistical computation and graphics72(http://www.R-project.org/). In all753

cases, the multiple testing correction procedure was performed by applying the Benjamini-Hochberg73
754

False Discovery Rate (FDR). Wilcoxon rank-sum tests were performed with the wilcox.test() R func-755

tion in a two-sided manner.756

When not specified, plots were made using the R package ggplot269. All box plots depict the first and757

third quartiles as the lower and upper bounds of the box, with a band inside the box showing the median758

http://www.R-project.org/


value and whiskers representing 1.5x the interquartile range. All scripts used in the analyses are publicly759

available (see the Data and Code Availability statement).760
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Figures Legends935

Figure 1: Global behaviour and relationship between chromatin and expression during transdiffer-936

entiation — See also Supplementary Figures 1-2, 7; Supplementary Tables 1-2. a: The transdifferentiation937

of human pre-B cells into macrophages lasts a period of seven days, which we monitored at twelve time-938

points. b: We have performed ChIP-seq of nine histone modifications and RNA-seq in whole-cell fraction,939

at twelve time-points along the process of transdifferentiation. All experiments were performed in two940

biological replicates. c: Trajectories of transdifferentiation derived from a Principal Component Analysis941

performed jointly on time-series gene expression and chromatin marks’ profiles. d: Correlations between942

levels of gene expression and histone marks. For a given mark and for each of the twelve time-points,943

we computed the steady-state Pearson r value between the vector of expression levels and the vector of944

chromatin signals corresponding to the 12,248 genes. These twelve correlation values are represented by945

single dots, the size of the dot being proportional to the hours of the corresponding time-point. The median946

Pearson r values for each mark are: H3K27ac: 0.67; H3K9ac: 0.72; H4K20me1: 0.59; H3K36me3: 0.72;947

H3K4me3: 0.70; H3K4me1: 0.51; H3K4me2: 0.61; H3K9me3: -0.07; H3K27me3: -0.17. In the case of948

time-course correlations, we obtained a Pearson r value for each expressed gene, and the distributions for949

all genes are represented by violin and box plots. Median Pearson r values across genes for each mark950

are: H3K27ac: 0.41; H3K9ac: 0.44; H4K20me1: 0.45; H3K36me3: 0.43; H3K4me3: 0.29; H3K4me1:951

0.10; H3K4me2: 0.10; H3K9me3: 0.13; H3K27me3: -0.03.952

Figure 2: Genes are characterized by a limited number of major chromatin states, which are953

more stable than expression — See also Supplementary Figure 3. a: A five-state multivariate HMM.954

Each state is defined by a combination of histone marks. We report the histone marks’ signals corre-955

sponding to each state. The states are sorted by increasing level of marking averaged over the nine956

histone modifications, with a and e states characterized by the lowest and highest average level of mark-957

ing, respectively. b: Heatmap representing the hierarchical clustering of the HMM profiles built along the958

transdifferentiation process for the 12,248 genes. c: Arc diagram representing the types of state transi-959

tions observed in the HMM-sequence profiles of DE genes. The size of the arrow base is proportional to960

the number of genes reporting a given transition. Only transitions involving ≥ 10 genes are shown. We961

tested, for the sets of genes reporting each type of transition, the significance in gene expression fold-962

change (FC) (Wilcoxon Rank-Sum paired test, two-sided). The color of the arrow represents the average963

FC among genes experiencing a given transition. Transitions characterized by no significant changes in964

expression FC (Benjamini-Hochberg FDR ≥ 0.05) are represented by gray arrows. Upper panel: transitions965

from weaker to stronger active chromatin marking. Lower panel: transitions from stronger to weaker active966

chromatin marking. d: Examples showing different HMM states along transdifferentiation. For each gene,967

expression and chromatin tracks from one biological replicate are displayed, as well as normalized line968

plots averaging the signal from the two replicates. Profiles of HMM states for the three genes are shown969

at the bottom. Left panels: example of an up-regulated gene (NUCB1) with a constant HMM state profile970

along transdifferentiation. Middle panels: example of an up-regulated gene (CD163) transitioning first from971



absence of marking state (a) to low marking state (b), and from this to strong marking state (e). Right972

panels: example of a down-regulated gene (MCAM) transitioning from active marking state (d) to bivalent973

marking state (c).974

Figure 3: Uncoupling of expression and chromatin marks throughout transdifferentiation — See975

also Supplementary Figure 4, Supplementary Tables 3-4. a: Expression and chromatin profiles across the976

12 time-points (columns) for the set of 8,030 DE genes, distinguishing between differentially marked (DM),977

stably marked (SM) and unmarked (UM) genes (rows). The profiles consist of row-normalized z-scores,978

computed independently for expression and chromatin marks. b: Expression and chromatin profiles over979

the 12 time-points (columns) for the set of stably expressed genes that are differentially marked for a given980

histone modification along transdifferentiation. The profiles consist of row-normalized z-scores, computed981

independently for expression and chromatin marks. The largest numbers of significantly variable profiles982

are observed for H3K27ac and H3K9ac. c: analogous representation to Figure 3b for silent genes. In this983

case, H3K4me1 and H3K4me2 are the most variable marks throughout the process.984

Figure 4: Chromatin marks show a coordinated behavior along transdifferentiation — See also985

Supplementary Figure 5, Supplementary Table 3. a: Decision-tree approach to label each of the 8,030986

DE genes based on their chromatin marking status and its relationship with the expression profile over987

time. The approach is applied independently for each of the nine histone marks. The first branch dis-988

tinguishes between unmarked (absence of peaks across all twelve time-points) and marked (presence of989

peaks in at least one time-point) genes. Within the set of marked genes, it further distinguishes between990

stably and differentially marked genes, i.e. genes characterized by absence and presence, respectively, of991

significant (maSigPro Benjamini-Hochberg FDR < 0.05) changes in chromatin signal along the process.992

Differentially marked genes are further classified into genes with positive, null or negative time-course993

correlation with expression. b: We assessed the overlap between sets of genes corresponding to the994

decision-tree labels across different histone marks (hypergeometric test). Hierarchical clustering of the995

FDR values identifies three main clusters: a) genes showing expression profiles positively correlated with996

H3K27ac, H3K9ac, H3K4me3, H3K36me3, H3K4me1, H3K4me2, H4K20me1, and negatively correlated997

with H3K27me3; b) genes unmarked for H3K27ac, H3K9ac, H3K4me3, H3K4me1, H3K4me2, H4K20me1998

and H3K36me3; c) genes with stable or uncorrelated profiles for H3K27ac and H3K9ac, stable profiles999

for H3K4me3, H3K36me3, H3K4me1, H3K4me2, H4K20me1, and unmarked for H3K27me3. The color1000

code for the labels is analogous to Figure 4a. c: Similar results are obtained with Cluster Correspondence1001

Analysis, a method that combines dimension reduction and cluster analysis for categorical data. Three-1002

dimensional representation of the genes (analysis objects), grouped into three clusters (color-coded) based1003

on the combinations of histone marks and labels they display.1004

Figure 5: Chromatin marking is associated with expression specifically at the time of gene acti-1005

vation — See also Supplementary Figure 5, Supplementary Tables 5-6. a: Percent stacked bar plot rep-1006

resenting, for each of the three clusters, the proportion of unmarked, stably marked, positively correlated,1007

uncorrelated, and negatively correlated genes identified with respect to each histone mark. b: Examples of1008



genes belonging to each cluster. For each gene, expression and chromatin tracks from one biological repli-1009

cate are displayed, as well as normalized line plots averaging the signal from the two replicates. Profiles of1010

HMM states for the three genes are shown at the bottom. Upper panels: example of an up-regulated gene1011

(ALDH3B1) showing stable and uncorrelated profiles for active marking and absence of H3K9me3 and1012

H3K27me3 along transdifferentiation. Middle panels: example of an up-regulated gene (DAPP1) showing1013

positively correlated profiles for active marking and absence of H3K9me3 and H3K27me3 along transd-1014

ifferentiation. Lower panels: example of a down-regulated gene (U2AF1) showing absence of marking1015

along transdifferentiation. c: Percent stacked bar plot reporting the proportion of up-regulated genes in1016

clusters 1-3 characterized by decreasing degrees of gene expression activation (bins of 10% decrement)1017

at time-point 0h p.i. The degree of gene expression activation is defined as the ratio between the gene’s1018

expression level at 0h and its maximum expression level along transdifferentiation.1019

Figure 6: Gene expression changes anticipate changes in most active marks for up-regulated1020

genes — See also Supplementary Figure 6. a: Alluvial plot describing, for each of the seven canonical1021

active histone marks, the number of genes, out of 257 genes activated during transdifferentiation (i.e. up-1022

regulated genes not expressed (< 1 TPM) at 0 hours p.i.), for which the up-regulation in a given mark’s sig-1023

nal anticipates (light green), co-occurs with (green) or follows (dark green) gene expression up-regulation.1024

For more details see Supplementary Figure 6b. The flow lines indicate the number of genes exchanged1025

among the three groups across increasing degrees of up-regulation. b: Lag (hours) between 25% up-1026

regulation in histone marks’ signal and expression level for the 257 selected up-regulated genes. Negative1027

lags correspond to changes in chromatin marks anticipating changes in gene expression; positive lags cor-1028

respond to changes in chromatin marks following changes in gene expression. c: Upper panel: Heatmaps1029

reporting the proportion (%) of genes activated during transdifferentiation whose changes in the chromatin1030

mark on row i anticipate changes in the chromatin mark on column j. Like in the previous analyses, we con-1031

sidered four subsequent degrees of up-regulation (25%, 50%, 75% and 100%). e.g. the fraction reported1032

in cell [row 1, column 2] of the first heatmap (25%), corresponds to the percentage of genes for which1033

the 25% up-regulation in H3K4me1 signal (yellow - row 1) anticipates the 25% up-regulation in H3K4me21034

signal (ochre - column 2). Lower panel: analogous to upper panel for the 629 up-regulated genes already1035

expressed (> 25 TPM) at 0h p.i. For this latter set of genes there is not a precise order of increase in1036

chromatin marks. d: Mean and standard deviation of time-series expression and chromatin profiles for the1037

257 (left panel) and 629 (right panel) up-regulated genes that are not expressed and highly expressed,1038

respectively, at 0 hours p.i. The expression and histone marks’ time-series profiles of each gene were1039

re-scaled to a 0-100% range prior to the analysis. We highlight in black the time-points at which the mean1040

value is ≥ 25%.1041

Figure 7: A model to explain the coupling between transcription and chromatin marking over1042

time a: According to our model, chromatin marking correlates with expression specifically during the first1043

stage of gene activation, and the deposition of histone marks follows a specific order. Further changes1044

in gene expression that happen later in time are mostly uncoupled from chromatin marking. b: Examples1045



of up-regulated genes inactive (CCL2) and highly active (FTL) at the beginning of transdifferentiation. For1046

each gene, expression and chromatin tracks from one biological replicate are displayed, as well as normal-1047

ized line plots averaging the signal from the two replicates. Profiles of HMM states for the two genes are1048

shown at the bottom. Left panels: for CCL2, most active histone modifications follow gene activation, with1049

the exception of H3K4me1 and H3K4me2, which anticipate it. Right panels: for FTL, most active histone1050

modifications remain stable along transdifferentiation, even though its absolute increase in expression is1051

much higher than that of CCL2. c: Percentage (%) of unmarked, stably marked, positively correlated, un-1052

correlated and negatively correlated profiles within cluster 3, cluster 2 (0-25%, 25-75%, 75-100% activation1053

level at time-point 0h), and cluster 1 up-regulated genes. Positively correlated genes are further sepa-1054

rated into genes whose histone mark’s up-regulation anticipates, co-occurs with or follows gene expression1055

up-regulation.1056
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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