library(ggplot2) library(cowplot) library(scales) library(gridExtra) library(grid) library(ggplotify) library(dplyr) library(data.table) dat<-fread('output/statsFiles/tmp/pacBioSII-Uci-SmartSeq2_MpreCap_0+.F121-902Rep3.readlength.tsv.gz', header=T, sep='\t') dat <- subset(dat, seqTech=='pacBioSII-Uci-SmartSeq2') dat <- subset(dat, capDesign=='MpreCap') dat <- subset(dat, sizeFrac=='0+') dat <- subset(dat, sampleRep=='F121-902Rep3') dat$seqTech <- gsub('-', '\n', dat$seqTech) dat$sampleRep <- gsub('MpreCap_', '', dat$sampleRep) horizCats <- length(unique(dat$capDesign)) * length(unique(dat$sampleRep)) vertCats <- length(unique(dat$seqTech)) wXyPlot = (horizCats * 0.9) +1.7 hXyPlot = (vertCats * 0.6) + 1.7 geom_textSize=1.4 themeSize = (14/5) * geom_textSize # https://stackoverflow.com/questions/25061822/ggplot-geom-text-font-size-control/25062509 lineSize=geom_textSize/8 minorLineSize=lineSize/2 wXyPlot = wXyPlot * 1.2 dat$sizeFrac_f=factor(dat$sizeFrac, levels=names(c('0+'='#b3b3b3', '0-1' ='#f765ac','1+' ='#b370f9')), ordered=TRUE) dat %>% group_by(seqTech, sizeFrac_f, capDesign, sampleRep) %>% summarise(n=n(), med=median(length)) -> datSumm summaryStats = transform(datSumm, LabelN = paste0('N= ', comma(n)), LabelM = paste0( 'Median= ', comma(med))) plotBase <- "p <- ggplot(dat, aes(x=length)) + geom_histogram(aes(y=..density..,fill=sizeFrac_f), binwidth=100) + geom_vline(data = summaryStats, aes(xintercept=med), color='#ff0055', linetype='solid', size=lineSize) + scale_fill_manual(values=c('0+'='#b3b3b3', '0-1' ='#f765ac','1+' ='#b370f9')) + geom_text(data = summaryStats, aes(label = LabelN, x = Inf, y = Inf), hjust=1, vjust=1, size=geom_textSize, fontface = 'bold') + geom_text(data = summaryStats, aes(label = LabelM, x = med, y = Inf), hjust=-0.1, vjust=2.5, size=geom_textSize, fontface = 'bold', color='#ff0055') + coord_cartesian(xlim=c(0, 3500)) + #scale_y_continuous(labels=scientific)+ scale_x_continuous(labels=comma, name='Read length (nts)')+ theme(axis.text= element_text(size=themeSize*1.8), axis.ticks = element_line(size=lineSize), axis.line = element_line(colour = '#595959', size=lineSize), axis.title=element_text(size = themeSize*2), panel.grid.major = element_line(colour='#d9d9d9', size=lineSize),panel.grid.minor = element_line(colour='#e6e6e6', size=minorLineSize),panel.border = element_blank(),panel.background = element_blank(), strip.background = element_rect(colour='#737373',fill='white'), legend.key.size=unit(0.5,'line'), legend.title=element_text(size=themeSize*1.2), legend.text=element_text(size=themeSize), strip.text = element_text(size = themeSize)) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + " plotFacetXy <- parse(text =paste(plotBase, "facet_grid( seqTech ~ capDesign + sampleRep, scales='free_y')")) plotFacetYx <- parse(text=paste(plotBase, "facet_grid( capDesign + sampleRep ~ seqTech, scales='free_y')")) plotFacetXy <- parse(text =paste(plotFacetXy, " + theme(strip.text.x = element_blank(), strip.text.y = element_blank())")) plotFacetYx <- parse(text=paste(plotFacetYx, " + theme(strip.text.x = element_blank(), strip.text.y = element_blank())")) pXy <- eval(plotFacetXy) pYx <- eval(plotFacetYx) legend <- get_legend(pXy) pXyNoLegend <- pXy + theme(legend.position='none') pYxNoLegend <- pYx + theme(legend.position='none') legendOnly <- grid.arrange(legend) pXyGrob <- as.grob(pXy) pYxGrob <- as.grob(pYx) pXyNoLegendGrob <- as.grob(pXyNoLegend) pYxNoLegendGrob <- as.grob(pYxNoLegend) hLegendOnly <- convertUnit(sum(legend$heights), 'in', valueOnly=TRUE) wLegendOnly <- convertUnit(sum(legend$widths), 'in', valueOnly=TRUE) hYxPlot <- wXyPlot wYxPlot <- hXyPlot hXyNoLegendPlot<- hXyPlot wXyNoLegendPlot<- wXyPlot - wLegendOnly hYxNoLegendPlot<- hYxPlot wYxNoLegendPlot<- wYxPlot - wLegendOnly wYxPlot = wYxPlot * 1.2 wYxNoLegendPlot<- wYxPlot - wLegendOnly save_plot('output/plots/readLength.stats/pacBioSII-Uci-SmartSeq2/MpreCap/pacBioSII-Uci-SmartSeq2_MpreCap_0+_F121-902Rep3.readLength.stats.legendOnly.png', legendOnly, base_width=wLegendOnly, base_height=hLegendOnly) save_plot('output/plots/readLength.stats/pacBioSII-Uci-SmartSeq2/MpreCap/pacBioSII-Uci-SmartSeq2_MpreCap_0+_F121-902Rep3.readLength.stats.xy.wLegend.png', pXy, base_width=wXyPlot, base_height=hXyPlot) save_plot('output/plots/readLength.stats/pacBioSII-Uci-SmartSeq2/MpreCap/pacBioSII-Uci-SmartSeq2_MpreCap_0+_F121-902Rep3.readLength.stats.xy.woLegend.png', pXyNoLegend, base_width=wXyNoLegendPlot, base_height=hXyNoLegendPlot) save_plot('output/plots/readLength.stats/pacBioSII-Uci-SmartSeq2/MpreCap/pacBioSII-Uci-SmartSeq2_MpreCap_0+_F121-902Rep3.readLength.stats.yx.wLegend.png', pYx, base_width=wYxPlot, base_height=hYxPlot) save_plot('output/plots/readLength.stats/pacBioSII-Uci-SmartSeq2/MpreCap/pacBioSII-Uci-SmartSeq2_MpreCap_0+_F121-902Rep3.readLength.stats.yx.woLegend.png', pYxNoLegend, base_width=wYxNoLegendPlot, base_height=hYxNoLegendPlot)